试验研究了加速碳化和氯离子诱导交互作用下混凝土中钢筋的锈蚀行为.利用电化学工作站测试了混凝土中预埋钢筋加速腐蚀过程中的腐蚀电位和腐蚀电流密度.结合钢筋周围氯离子浓度及pH值的变化,分析了碳化和氯离子对钢筋锈蚀的影响规律.结果表明:氯离子的渗入可快速导致钢筋锈蚀;在碳化和氯离子交互作用下,碳化对钢筋锈蚀过程具有延缓作用.
智能密集柜功能特点:
1.密集架体两边入口处中段装有一对红外线,对面架体装有反射板,形成了对主动感应保护光栅。此主动红外感应有两种保护功能,其一是当架体在运行过程中有人突然闯入时,红外线立即检测到并使系统自动停止;其二是当密集架打开时,红外线会自动对进入该列区的人数进行统计登记,若已经进入的人未全部出来,系统会显示有人并禁止任何形式的架体移动操作。从而实现了对人安全有效的保护;
2. 此主动红外线还实现了对该列区的照明灯光自动控制,当进入人数不为 0 时,系统会自动打开列区内的照明灯光,当进入人数为 0 时,系统自动关闭列区内的照明灯光。
新闻:泰州油画密集柜改装

二、自动计数和显示进入人数示保护功能
1. 密集架在架体移动到位并检测到有人进入列区后,会自动进入禁止移动保护状态,同时架体数码显示管显示进入人数,并触发照明灯打开。如需继续移动,必须轻按面板上的“停止/清除”按钮,则可以解除锁定操作。当密集架处于禁止移动状态时,对架体一切操作命令无效。
2. 无人操作超时自动关闭功能(此功能可由群区总机设置关闭或开启):
1) 若开启了此功能,当工作人员忘记合架时,在一定时间内,语音报,自动关灯,且自动合架,锁定密集架。
2) 经电脑程序管理软件管理,当工作人员忘记合架时,在一定时间内,语音报,自动关灯,且自动合架,锁定密集架。

通过研究玻璃纤维-铝合金层合板在盐雾环境下不同老化周期后的力学性能及复合材料层红外光谱,分析了层合板在盐雾老化条件下的性能变化。在加速盐雾老化条件下,树脂基体发生了降解,树脂-纤维界面及表面铝合金发生腐蚀破坏,随老化时间的延长,0°及90°层合板的拉伸、压缩及面内剪切强度均呈现出明显的下降趋势,90°层合板内部受到的损伤更为严重,盐雾环境会降低层合板内热固性树脂基体的交联程度,并破坏树脂-纤维及树脂-铝合金的界面,影响应力在玻璃纤维-铝合金层合板层间的传递,使材料力学性能发生衰减。
三、 密集架条形压力传感器功能:
1.在架体下端须装有条形压力传感器。当人或物体触到条形压力传感器时,架体自动停机并锁定。
2.条形压力传感器在任何部位,压力≥200g 时即可产生作用。
3.下列情况电动密集架立即停止;
1.触动安全系统;
2.运动中按下列子机任意操作按键;
3.有异物进入移动中通道;
4.移动中有书堕落及书架触到通道地面物品;
5.任何安全装置发生故障;
6.运行时受到反向阻力;
4.所有非正常情况发生,故障灯亮或有声报。
5.触动安全系统的情况下,任何移动中的书架,在≤60mm 的滑行距离内完全停顿下来。
新闻:泰州油画密集柜改装

四、采用 24V 低压直流系统供电
1.整个控制系统的电压采用 24V 低压直流,每个群区都有一电源盒,直接将市电 220V 转换成 24V 直流电压输出。220V 进入时设有管和专用的漏电开关,保证人员操作安全。
2.由于采用 24V 直流电压,整个金属架体内的走线是非常安全的,杜绝了因某些高压线漏电而导致触电的危险。
五、密集架 自动断电功能
1.24V 输出回路输出也设置了专用丝,当发生短路时或过电流时立即烧断丝,回路切断。保证整个系统的安全用电。
2.马达超负荷时,书架立即停止。

试验测量了完整的早龄期混凝土变形曲线,并称之为混凝土的全变形曲线.混凝土全变形曲线表现为先膨胀后收缩的变形特征,基于此,定义膨胀结束点为混凝土的凝结时间,定义混凝土凝结后的变形为有效变形.同时分别考察了初测时间和环境温度对混凝土变形测量结果的影响,结果表明:初测时间晚于凝结时间将不能准确测量到混凝土的完整变形,并可能给试验结果带来较大偏差;环境温度显著影响混凝土的凝结时间和有效变形的大小.
六、防火隔温功能
1.所有电机通电动作,设定时间 25 秒,杜绝了电机升温引起的安全隐患,保证电机温度不超库房温度5℃。
2.所有列驱动电机均置放于机箱内,箱内设有防火、阻燃材料。
3.架体底盘与电机接触处,设有两层中空钢板,并用阻燃粉末喷涂,电机热能定向传导,杜绝热量传递到搁板。
七、密集架 测功能
每列架体都有独立的安全保护线路系统,察安全系统的正常运行。任何安全保护组件有异常时,系统自动锁定并提示,然后等待检修。

对纤维增强树脂基复合材料表面金属化研究进行综述,分别介绍了纤维与树脂在复合前的表面金属化方法,纤维与树脂复合后固化前的表面金属化方法以及纤维与树脂固化后表面金属化方法;并且对复合材料在不同阶段的金属化方法优缺点进行分析介绍,结合航天领域在复合材料表面金属化的需求,分析了不同的金属化方法在航天复合材料结构件上的适用性。