采用正交试验对硅灰-氧化铝地质聚合物进行了力学性能试验研究.结果表明:影响硅灰-氧化铝地质聚合物强度的因素依次为碱激发剂浓度、硅铝比(n(SiO2)/n(Al2O3))、碱激发剂种类.配制硅灰-氧化铝地质聚合物的碱激发剂为KOH,其浓度为3.0mol/L,硅铝比为4.当KOH浓度为3.6mol/L,硅铝比为4时,硅灰-氧化铝地质聚合物的抗折强度可达7.17MPa,抗压强度可达17.15MPa.
密集柜的规格技术参数:标准高度2300mm,标准节距900mm,标准宽度500mm,标准层数为6层,层距330㎜,每层搁板均匀承重80㎏、主要由20mm×20mm方钢轨道、3.0mm底盘、1.5mm复柱立杆、1.0mm搁板、1.2mm侧面板、1.0mm门板、旋动机构、防震装置、防倒装置、制动装置以及防尘、防鼠装置、智能控制系统等部分组成。智能密集架(密集柜)集手动、电动、电脑控制于一体的智能化网络密集架,可实现远距离操作,宏观自动化架体控制。

用RCM法和电通量法2种方法测试了高温后不同配比混凝土的抗氯离子渗透特性,比较了2种方法的测试结果,并通过SEM观测了高温前后混凝土微观结构的变化.结果表明:高温前和高温后,混凝土强度等级对氯离子渗透性均有明显影响;随着温度升高,混凝土的氯离子渗透性不断提高,特别是当温度达到800℃时有显著增加;RCM法和电通量法所测指标的变化趋势基本一致,但RCM法能更为准确地反映出高温对各配比混凝土孔隙结构的影响规律;高温前后混凝土微观结构变化与其宏观上氯离子渗透性的变化规律相符.
三种传动方式各自独立,互不影响。双面操作面板更使对产品的操作随心所欲、可以做到电动开关每一列架体,在每列架体的面板上都装有电机启动按钮,当管理人员需要打开任何一列架体,只要轻按开启按钮,架体就可自动打开。如果停电的时候,也可以用手摇动摇把,手动开启密集架、为方便的是智能密集柜安装有我公司自主研发的智能软件,软件程序可安装于档案管理计算机中,在档案存放时就在计算机中建立档案管理的数据库,在以后的管理过程中,只要在计算机管理界面输入需要查询的档案,该档案所在的密集架架体即可自动打开。

针对C60,C70两种混凝土进行了受火模拟试验,采用红外热像法与超声回弹法对混凝土的损伤进行了检测,验证了这两种方法的可行性与特点,并探究了红外热像法及超声回弹法作为相互补充的方法检测混凝土受火后损伤程度的可行性.试验发现:混凝土的受火温度和剩余抗压强度有着很强的相关性,受火温度可以作为混凝土损伤程度的判定指标.红外热像法测得的混凝土表面的平均温度升高值与受火温度,以及超声回弹法测得的声波平均速度与受火温度、回弹值与剩余抗压强度都有极好的相关性.同时由于受火温度的不同,两种检测方法适用的情况也有所不同.
(2)红外线感应保护:智能型密集架的架体之间都安装有红外感应系统。当密集架被打开时,红外感应自动启动,工作人员在架体间工作时,密集架无论是电脑还是电机按钮都无法启动合架,这样防止其他工作人员不知其中有人随意开合架体而夹伤工作人员,起到保护作用。
(3)电磁保护:智能型密集架还安装有电磁感应系统,如红外感应一样,当架体间有人时,不能随意开合其他架体,保护工作人员的安全.

风力发电叶片叶根连接螺栓是复合材料叶片与风轮轮毂连接的的也是关键的部件,通常在安装过程中会施加螺栓预紧力,保证叶片与轮毂连接的紧密性。预紧力大小的设定对螺栓是否能够正常使用,乃至叶片能否正常运行都有重大的影响,在螺栓连接的有限元分析中准确模拟螺栓的预紧力是一项复杂而困难的工作。论述了螺栓预紧力的理论计算过程及利用有限元技术在ANSYS中模拟螺栓预紧力的方法,为叶片根部连接施加预紧力提供可靠的依据和指导。