为了确定等效体积单元(RVE)模型中砖砌体材料的准则,选取3种组砌方式、2种灰缝厚度和10种压应力水,通过特别设计的夹具对144个砖砌体试件进行了压剪试验.综合考虑试验结果和数值模拟对面光滑性的要求,发现Drucker-Prager准则可用于描述砖砌体材料的压剪,其参数可由试验结果进行标定.将标定后的Drucker-Prager准则应用于RVE模型,对砖砌体试件抗压试验和砖砌体墙伪静力试验进行了数值模拟,模拟结果与试验结果相符.研究手段和成果可为砖砌体材料或结构的数值分析提供参考.
密集架的用途已不仅仅局限于档案资料的储存。
更多的适用于法院、检察院、、大型商场,学校,企业单位资料室、样品室等存放图书资料、档案资料、 档案财务凭证、货物的新型储物设备。与式书架、货架、档案柜相比,现在密集架更适用于现在都市率的办公环境。
很多人都在用智能密集柜,那么智能密集柜有什么特点呢?首先知道能密集柜可以很方便的起来,它是可单列或多列一起在导轨上行走,所以这样的话,每列具有手刹制动装置(自锁柄)。如果你不会操作,那么如果是自锁柄在OFF位置时,架体不能,在ON位置时,架体可,每列架体的侧面板上有标签框,这样的话,当列底务上有防倒装置,而每个组合箱体的前后各一列装有总锁,那么用于整体的锁闭,起到保密作用,导轨的端部安装限位装置。
针对碳纤维复合材料矩形截面管的抗弯性能,设计了五种不同铺层方案的矩形截面管。应用有限元软件Abaqus对其三点弯曲进行了分析;并通过粘贴光栅光纤传感器,应用试验机对实验件进行了三点弯曲实验。分别获得了和实验相应载荷下矩形截面管下表面中间位置的应变值,进行一次拟合后获得相应的载荷-应变曲线,从而得出和实验抗弯刚度值EI。通过对比,两者的结果具有很好的一致性。结果表明:0°比例越高,抗弯性能越好。利用X射线衍射仪(XRD)、环境扫描电镜(SEM)、红外分析(IR)等微观测试手段,对3种有机大分子(萘系、脂肪族系、聚羧酸系)作用下的3CaO.SiO2(C3S)单矿水化过程进行了研究,分析了有机大分子对C3S单矿水化的影响,探讨了有机大分子与水泥浆体的化学反应作用.结果表明:有机大分子的掺入改变了C3S单矿的水化历程,促进了C3S的后期水化,同时使得纤维状的C-S-H凝胶生长更完整,水泥颗粒间的空隙变小,但并未发现新的水化产物生成.
顺时针或逆时针方向摇动手柄,活动架将在轨道上稳行走,档相邻二架体距离移至一定位置时(有足够 位置存取资料),顺时针转动两列架体的自锁柄至OFF位置,此时再摇动手柄,二架体不能再,然后进入架体间存取资料(如转动自锁柄时不能锁定架 体,可稍稍转动手轮至能拉动自锁柄,不能强行锁定,以免给自锁柄扳断或损坏自锁装置)。
新闻:广元手动密集柜型号—密集架
利用ABAQUS的Explicit模块建立了行人头部碰撞碳纤维夹芯复合材料的有限元模型,并使用DIAdem工程分析软件计算了头部损伤指标HIC值。通过钢球碰撞试验验证了模型的有效性,分析了碳纤维复合材料层数,硬质泡沫厚度,蒙皮的铺层方式对HIC值和侵入量的影响。结果表明,加入硬质泡沫可以大量减少碳纤维复材使用量,并且不会HIC值和侵入量;硬质泡沫厚度不宜太大也不宜太小,有值;各向同性明显的铺层方式有利于减小HIC值。碳纤维复合材料具有比重小,比强度和比模量高,耐疲劳等特点。针对某汽车传动轴的强度和临界转速要求,设计了一种碳纤维复合材料汽车传动轴,并采用Abaqus有限元分析软件对传动轴进行了分析,结果显示了复合材料传动轴在受扭转载荷情况下的应力应变分布情况以及失效情况,碳纤维轴管应力应变分布均匀,结果与设计理论相吻合,并与实验结果相验证,说明所设计的碳纤维复合材料传动轴的性能可以满足汽车传动轴的要求。
1、密集架行走机构为链条传动,当架体使用一段时间后,可打开下层层板,给链轮及轴承加注润滑油。
2、安装密集架的库房应干燥通风。
3、架体表面不允许阳光长时间照射。
4、应保持导轨沟槽清洁干净、无杂物堵塞。
5、喷塑表面严禁用、高度酒精、松香水、香蕉水擦洗
新闻:广元手动密集柜型号—密集架
采用炉底渣作轻砂,普通水泥和Ⅱ级粉煤灰作胶凝材料,膨润土和复合外加剂作改性剂配制轻质保温砂浆.研究了膨润土掺量对炉底渣保温砂浆的和易性、密度、抗压强度和导热系数的影响.结果表明:掺入一定量的膨润土能明显改善砂浆的和易性,提高砂浆的抗压强度,而砂浆表观密度和导热系数变化不大.综合考虑保温砂浆的工作性、强度和导热系数等方面因素,较为的膨润土掺量为5.0%~7.5%(分数).采用热孔计法测试了3,28,90d龄期下普通混凝土和混凝土孔结构特征及其变化,并与压法、氮吸附法进行了比较,进一步分析了混凝土微孔结构及孔隙率与其宏观力学性能的关系.结果表明:与压法相比,热孔计法能较好地表征混凝土中直径小于100nm的孔结构变化情况.混凝土养护28d后,孔径大于20nm的孔隙率变化较小,而在普通混凝土中这类孔仍然持续减少.相较于孔隙率的变化,孔径分布的变化能更好地解释混凝土宏观性能的差异.对普通与混凝土来说,直径小于20nm的孔对其宏观力学性能的影响不大.